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INTRODUCTION 
• We learned about the electric force and 

electric field in previous chapters on 

electrostatics and current electricity. 

• The magnetic force and magnetic field are 

two more key properties connected with 

moving charges.  

• A magnetic field is created when current 

flows through a conductor, and any charge 

travelling through this field will experience a 

magnetic force that depends on the velocity 

(both magnitude and direction) as well as 

some feature of the field. In this chapter, we 

will look in depth at the properties and laws 

that regulate the magnetic field and 

magnetic force. 

• Magnetic fields and forces have several 

industrial and medical applications.  

• A common example is the employment of 

an electromagnet to lift heavy metal items. 

CD and DVD players, computer hard drives, 

loud speakers, headphones, televisions, and 

telephones all employ magnets.  

• Magnets are everywhere around us. 

Magnets are utilised in everything from 

doorbells to autos to security alarm systems 

to hospitals. 

LORENTZ FORCE: DEFINITION OF 

MAGNETIC FIELD B 
• If an electric field and a magnetic field 

existence in a region, the force acting on a 

point charge in the region depends on both 

the charge's position and velocity.  

• The force will be composed of two 

components: the electric force Fe and the 

magnetic force FM.  

• The power Fe is not affected by the charge's 

motion, but only by its position, whereas FM 

is affected by both the charge's velocity and 

position (see Fig. 21.1). Fe is magnitude is qE, 

and its direction is along E (q is positive). 

• To determine the size and direction of Fm, 

we created a vector B known as magnetic 

flux density or magnetic induction, which 

characterises the magnetic field at a certain 

position.  
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• Experiments indicate that the force Fm is 

proportional to the magnitude of charge q, 

velocity v of the charge, and density B, with 

this force always perpendicular to the v and 

B vectors. Furthermore, if the charge moves 

along the direction of B at a point, the 

magnetic force acting on it is zero. 

• We can summarize all these experimental 

results with the following vector equation: 

mF qv B=   

That is, the force Fm on the point charge is 

equal to the 

 
Figure: Magnetic Force on a Moving Charge 

charge q times the cross product of its 

velocity v and the field B (all measured in 

the same reference frame). Using formula 

for the magnitude of cross product, we can 

write the magnitude of Fm as   

mF q vB sin=   

where θ is the angle between the velocity v 

and magnetic field B. 

• If angle θ is 900, then the above relation for 

magnetic force can be used to define the 

magnitude of magnetic flux density B as, 

mFB
q v⊥

=  

where v⊥ is the velocity component 

perpendicular to vector B. 

• Thus, the total electromagnetic force acting 

on charge q is given as, 

e mF F F= +  

or  

F qE q v B = +    

This is called Lorentz force. 

• The unit of B is Tesla abbreviated as. 

If q =1C, v =1m/s, sinθ =1 ; θ = 900  and Fm = 

1N , then  B =1 T = 1Weber- m-2 .  

• Thus 1 Tesla is defined as the unit of 

magnetic field strength in S.I units which 

when acting on 1C of charge moving with a 

velocity of 1m/s at right angles to the 

magnetic field exerts a force of 1N in a 

direction perpendicular to that of field and 

velocity vectors. C.G.S. units of magnetic field 

strength or magnetic induction is 1 gauss or 1 

oersted. 1 gauss = 1 oersted = 10-4. 

RELATION BETWEEN ELECTRIC AND 

MAGNETIC FIELD 
• Assume that in a specific inertial reference 

frame K, the electric field is zero and the 

magnetic field has a finite non-zero value. A 

point charge travelling with velocity v in the 

frame K feels a magnetic force and its 

velocity changes as a result.  

• Assume we have a frame K' moving with 

respect to frame K at a constant velocity v. The 

point charge is initially at rest in frame K', 

therefore the magnetic force on it is zero. 

However, while its velocity varies in the K 

frame, it also changes in the K' frame, implying 

that it experiences a force in the K' frame. 

• Assume we have a frame K' moving with 

respect to frame K at a constant velocity v. The 

point charge is initially at rest in frame K', 

therefore the magnetic force on it is zero. 

However, while its velocity varies in the K 

frame, it also changes in the K' frame, implying 

that it experiences a force in the K' frame. 

• As a result, the electric and magnetic fields 

are interconnected. We define 

electromagnetic field as a single physical 

entity. The frame of reference determines 

whether the electromagnetic field appears as 

an electric or magnetic field. If we confine 

ourselves to a specific reference frame, we 

can treat electric and magnetic fields as 

distinct things. In the general situation, a 

field that is constant in one reference frame 

is observed to fluctuate in another. 
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MAGNETIC FIELD LINES 
Magnetic field lines are used to represent the 

magnetic field in a given region. The rules for 

constructing magnetic field lines are as follows: 

(a) The direction of the magnetic flux density 

vector B at a point is given by the direction 

of the tangent to a magnetic field line at 

that position. 

(b) At a given position, the density of magnetic 

field lines is proportional to the magnitude 

of vector B. The magnetic field is greater 

where the field lines are closer together. 

EARTH'S MAGNETIC FIELD 
• A magnetic field can be found anywhere 

near the earth's surface. The line of the 

Earth's magnetic field coincides with the 

magnetic north-south direction at that 

location, i.e. the plane going through the 

geomagnetic poles.  

• The Magnetic Meridian is the name given to 

this plane. This plane is slightly inclined to 

the plane known as the geographic 

meridian, which runs through the 

geographic poles. 

 
• The declination at a point is the angle 

formed by the magnetic meridian and the 

geographic meridian at that location. 

• The magnetic poles of the Earth are located 

opposite to the geographic poles, i.e. near 

the North Pole, the magnetic south pole is 

located, and vice versa. 

 

• The magnetic field vector of the earth at 

every place in the magnetic meridian plane 

is normally inclined to the horizontal at that 

point by an angle known as the magnetic 

dip at that site. If the earth's magnetic field 

at that point is B and the dip is θ 

Bv = the vertical component of in the 

magnetic meridian plane = Bsinθ  

BH = the horizontal component of in the 

magnetic meridian plane = Bcosθ 

B

H

B
tan

B
=   

 

MOTION OF CHARGED PARTICLE IN 

ELECTRIC AND MAGNETIC FIELD 

Trajectory of a Charged Particle Moving in 

Uniform Electric Field 

• Let a positively charged particle having 

charge +q and mass m enter at origin O with 

velocity v along X-direction in the region 

where electric field E is along the Y-direction 

(see Fig. 21,2). 

• Force acting on the charge +q due to electric 

field E is given by 

F qE=  

Acceleration of the charged particle is   

F
a

m
=  or 

qE
a

m
=    …(i) 

 
Figure: Charged particle moving in electric field 
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• The charged particle will accelerate in the 

direction of E, deviating from its straight line 

path. 

• During its motion in the region of electric 

field, along X-axis we have   

ux = v 

ax = 0  

x = vt  

x
t

v
=    ...(ii) 

along Y- axis we have  

uy = 0 

ay =qE / m  

2
y

1
y a t

2
=  

21 qE
y t

2 m

 
=  

 
 

Using Eq, (ii), we get 
2

1 qE x
y

2 m v

  
=   

  
 or 

2
2

2

qEx
y Kx

2mv
= =         …(iii) 

where    

2

qE
K i

2mv
=  

k is a constant. Thus The charged particle 

follows a parabolic path. 

Trajectory of a Charged Particle Moving in 

Uniform Magnetic Field 

(a) Magnetic force acting on a charged particle 

travelling parallel (θ = 00) or antiparallel (θ = 

1800) to B, will be zero. Thus the trajectory 

of the particle is a straight line. 

(b) If the particle's velocity v is perpendicular to 

B, i.e. θ =900, then the magnetic force is F = 

qvB, and the direction of this force is always 

perpendicular to v. The charged particle 

goes in a circular path. (see Fig. 21.3). 

(c) If the charged particle's velocity v makes an 

angle θ with B, the particle moves in a 

helical route. The perpendicular component 

vsinθ drives the charged particle in a circular 

route, whereas the parallel or antiparallel 

component vcosθ remains unaltered 

because there is no magnetic force along 

the direction of B. As a result, the charged 

particle follows a helical route 

 
Figure: Charged particle moving in uniform 

magnetic field in electric field 

(d) The magnetic force on the component of 

velocity perpendicular to the magnetic field 

gives the charged particle with the 

centripetal force to follow a circular 

trajectory of radius r. 
2mv

qv B
r

⊥
⊥ =  

or 
mv

r
qB

⊥=  

Angular velocity,  

v qB

r m
⊥ = =  

Frequency  

qB
f

2 m
=


 

 
Figure: Charged particle moving in helical path 

in uniform magnetic field 

2 m
T

qB


=  

Time period T is independent of v. 

DISCOVERY OF ELECTRON 

The simplified version of Thomson's experiment 

is depicted in Fig. 21.5. By connecting a battery 

across their terminals, an electric field E is 

created in the region between the deflecting 

plates. The magnetic field B is directed into the 

figure's plane from the region between the 

deflecting plates. 
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Figure: Thomson's experimental set up 

• Charged particles (electrons) are 

accelerated by an applied potential 

difference V produced by a hot filament at 

the rear of the evacuated cathode ray tube.  

• They produce a narrow beam after passing 

through a slit in screen C. They then pass 

through the area between the deflecting 

plates on their way to the centre of 

fluorescent screen S, where they generate a 

bright spot.  

• Crossed-fields E and B in the region 

between the deflecting plates can deflect 

them away from the screen's centre. The 

deflection of charged particles can be 

adjusted by varying the size and direction of 

the fields, E and B. 

• When both fields E and B are turned off, the 

charged particle beam arrives at the screen 

undeflected. 

• When field E is activated and the charged 

particle beam is deflected. 

• Keeping the field E unaffected, the B field is 

also enabled. The magnitude of B is 

changed until the deflection of the charged 

particles is zero. The magnetic force 

balances the electric force on the charged 

particles in this circumstance. 

qE qv B= −   

E v B= −   

• The ratio of magnitudes of E and B in this 

situation gives the speed of the charged particles. 

E
v

B
=  

• When only the E field is activated, the 

displacement of the charged particles in the 

y-direction, when they reach the end of the 

plates,  
2

2

q EL
y

2mv
=  

where v is the particle's speed along the x-

axis, m is its mass, q is its charge, and L is 

the length of the plates. The direction of 

deflection of charged particles indicates that 

the particles are negatively charged. 

• Substituting the value of v in terms of E and 

B we get, 
2 2q B L

y
2mE

=  

2 2m B L

q 2yE
=  

• Thus in this way the mass to charge ratio of 

electrons was discovered. 

HALL EFFECT 

• The Hall Effect is defined as the generation 

of a voltage difference (the Hall voltage) 

across a current-carrying wire in a magnetic 

field perpendicular to the current. The hall 

voltage is generated in the opposite 

direction of the electric current in the 

conductor. Edwin Hall found it in 1879. The 

Hall Effect helps us to determine whether 

the 
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• The charge carried in a conductor is either 

positively or negatively charged, as well as 

the number of charge carries per unit 

volume of the conductor. 

• External magnetic field B, points into the 

plane of a copper strip of width d, carrying a 

current I as shown in Fig. 21.6. 

• The magnetic force Fm will act on each 

electron travelling towards the strip's right 

edge. As electrons build on the right edge, 

positive charges accumulate on the left 

edge, creating an electric field E within the 

strip that is directed from left to right. 

• This field applies an electric force Fe on 

each electron near the strip's left edge. The 

electric field E causes the hall potential 

difference V over the width of the strip to 

be V = Ed. 

• When the electric and magnetic forces 

balance each other, 

 eE = evdB  or E= vdb 

 The drift speed vd is given as  

 d

J I
v

ne neA
= =  

So we obtain 
BI

n
V e

=  where 

Cross section Area

Width

− 
 
 

  is the thickness of 

the strip. 

 
Figure: Hall Effect in conductor 

MAGNETIC FORCE ON A CURRENT 

CARRYING WIRE 
• If the number of free electrons per unit 

volume in a conductor is n, then the total 

charge of free electrons in an infinitesimal 

volume dV in the conductor will be 

dq = ne dV 

• If the magnetic field at the elementary 

volume's position is B and the drift velocity 

of free electrons is vd, then the magnetic 

force on the elementary volume is 

ddF ne v B dV =    

• Now we know that the current density is 

given as 

dj nev=  

dF j B dV =    

We can write, after introducing the vector in 

the direction of current, jdV j Sd Id=  = . 

Here ΔS is the area of cross-section and the 

length of the elementary volume dV. 

So  

dF I d B =    

The total magnetic force on the conductor is  

F I d B =    

• If the field B is constant throughout the 

length of the wire and perpendicular to it, 

we can write for a thin straight wire of 

length L 

F = I L B 

In vector form we can write,  

F IL B=   

where L is a length vector with magnitude L 

that runs down the wire segment in the 

direction of the (conventional) current. 

• The following are some key points about the 

force on a current carrying conductor in a 

magnetic field: 

(a) In a uniform magnetic field, the force, dF 

= IBdl sinθ is independent of the present 

element's position vector. As a result, 

this force is non-central. (A central force 

varies with position vector.) r,F = f (r)   
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Figure: Current carrying conductor in 

uniform magnetic field 

(b) The force dF is always perpendicular to 

the plane in which B and dl are located. 

Vectors B and dl are not always 

perpendicular to one other. 

(c) As explained above, the total magnetic 

force on the conductor is  

 F I d B =    

For uniform magnetic field, B can be 

taken out from the integral. 

F I d B =    

• According to the law of vector addition d  

is equal to the length vector L from initial to 

final point of the conductor as shown in Fig. 

21.7. For a conductor of any arbitrary shape 

the magnitude of vector L is different from 

the actual length L' of the conductor. 

F IL B =   

 
(d) For a current carrying closed loop of any 

arbitrary shape placed in a uniform 

magnetic field  

 F I d B 0 =  =
   

 When we add all of the elementary 

vectors dl around the closed loop, the 

vector sum is zero because the final 

point is the same as the initial position. 

 d 0 =  

 
Figure: Area vector of closed loop is in 

direction of uniform magnetic field 

• As a result, the net magnetic force on a 

current loop in a homogeneous magnetic 

field is always zero. However, different 

sections of the loop experience different net 

forces, even if the vector sum of all these 

forces is zero. 

• As a result, the loop may undergo some 

microscopic contraction or expansion, 

putting it under tension. 

• Although the resultant of magnetic forces 

operating on the loop is zero, the resultant 

torque may not be zero. 

• As a result, with a homogenous magnetic 

field, the torque on a loop is not necessarily 

zero. 

(e) When a current-carrying closed loop is 

placed in a non-uniform magnetic field, 

it will experience non-zero net force and 

torque. 

 
Figure: Area vector of closed loop is 

perpendicular to uniform magnetic field 

magnetic field 
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• In a non-uniform field, even a conductor of 

arbitrary shape that does not form a loop will 

feel torque.  If the conductor is free to move, 

it will move in both directions at the same 

time. 

(f) When a current carrying conductor or 

closed loop moves or spins in a 

magnetic field, the kinetic energy 

obtained is attributable to the work 

done by magnetic forces rather than the 

energy given by the electric source that 

keeps current flowing in the 

conductor/loop. 

 
Figure: Closed loop in non-uniform 

magnetic field 

• Magnetic forces operating on a current 

carrying conductor produce no network. 

Despite what appears to be the case, 

( )W F.dr I d B .dr K = =  = 
     

but actually the kinetic energy is supplied by 

the electric source. 

Fleming's Left Hand Rule 

• If the thumb and the first two fingers of the 

left hand are stretched perpendicular to 

each other, and the first finger points in the 

direction of the magnetic field and the 

second middle finger points in the direction 

of the current in the conductor, then the 

thumb's direction gives the direction of 

force on the conductor. 

 
Figure: Fleming's Left hand Rule 

 

 

TORQUE ON A CURRENT LOOP 
• Consider a square loop PQRS with side l and 

area A = l2 (Figure). Let us introduce a unit 

vector n normal to the plane of the loop, 

the direction of which is connected to the 

current direction in the loop by the right-

hand screw rule. The loop's area can be 

expressed in vector form as. 
2ˆA n=  

• If the current I in the loop is anti-clockwise, 

the vector n will be oriented towards the 

reader along the perpendicular to the plane 

of the paper, as shown in Fig. 21.13. Assume 

the loop is placed in a uniform magnetic 

field B directed perpendicular to the plane 

of the paper, i.e. along the vector n. In this 

case, the magnitude of magnetic force on 

each branch of the loop is, i.e. 

1 2 3 4I B, i.e. F F F F I B= = = =  

• The direction of force on each branch can 

be found by Fleming's left hand rule.  

• We can easily see that F1 = -F3 and F1 and F3 

have same line of action. Similarly F2 = -F4 

and F2   and -F4 have same line of action. So, 

the net force as well as the net torque on 

the loop PQRS is zero. 
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Figure: Zero torque on closed loop in uniform 

magnetic field 

• Now suppose the loop is rotated with an 

angle θ about the line MN as shown in Fig. 

21.14). So the angle between vector n and B 

will be θ. 

• In this situation each of the sides Q'R' and 

S'P' makes an angle (90-θ) with the 

magnetic field B so that   

2 4F F I Bcos= =   

and again we have F2 = -F4 and F2 and F4 

have same line of action. The side PQ shifts 

to P'Q' and RS shifts to R'S' such that PQ II 

P'Q' and RS II R'S' so that   

1 3F F I B= =  

and again we have F1 = -F3, but the lines of 

action of F1 and F3 are displaced from each 

other by a distance of lsinθ. This forms a 

force couple, and the torque due to it will 

have magnitude 

( ) 2I B sin I Bsin IABsin =  =  =   

• This torque is directed along the line MN. 

 
Figure: 14 Non-zero torque on closed loop in 

uniform magnetic field 

In vector form we can write  

IA B =   

Defining magnetic dipole moment of the 

loop as, 

ˆM IA IAn= =  

we can write torque as 

M B =   

If the number of turns in the loop is N then 

we have,  

ˆM NIA NI An= =  

Note that although this formula has been 

derived for a square loop, it comes out to be 

true for any shape of the loop. 

MAGNETIC DIPOLE MOMENT 

• Every current carrying loop behave like a 

magnetic dipole. It has two poles, north (N) 

and south (S) similar to a bar magnet. (see Fig. 

21.15) Magnetic field lines are closed paths 

directed from the North Pole to the South 

Pole in the region outside the magnetic dipole 

and from South Pole to North Pole inside the 

magnetic dipole. 

 
Figure: North and South Pole of current coil 

• The magnetic dipole moment of each loop is 

defined as, M = NIA.  where N denotes the 

number of turns in the loop, I is the current 

in the loop, and A denotes the area of the 

loop's cross-section. M can be directed 

using any of the following methods: 

(a) We travel inside the magnetic dipole in 

the direction of M, from South Pole to 

North Pole. The sense of current can be 

used to identify the North and South 

Poles of a current loop. The South Pole 

is the side where the current appears to 

flow clockwise, while the North Pole is 

the opposite side where it appears to 

flow anticlockwise. 
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(b) Vector M is perpendicular to the plane of 

the loop. The right hand screw rule 

connects the direction of M to the present 

direction in the loop. Curl the fingers of 

the right hand around the perimeter of 

the loop in the direction of current, as 

shown in Fig.21.16. The thumb is then 

stretched perpendicular to the plane of 

the loop and directed towards M.  

 
Figure: Right hand screw rule 

• The potential energy U of a magnetic dipole 

placed in a uniform magnetic field is 

U MBcos= −   

U M.B= −  

• For a bar magnet we define the magnetic 

dipole moment as 

M m=  
Here m is the pole strength of the bar 

magnet and vector L is directed from South 

Pole to North Pole. 

The unit of magnetic dipole moment is. A -m-2 

 
Figure: Direction of magnetic moment 

• The magnetic field at a long way on the 

magnetic axis of a bar magnet with 

magnetic dipole moment M equals 

0
3

2M
B

4 x

 
=  

  
 

• The magnetic field at a large distance x on 

the perpendicular bisector of a bar magnet 

having magnetic dipole moment M is 

0
3

2M
B

4 x

 
=  

  
 

BIOT-SAVART LAW 
• The magnetic field for a long distance on a 

bar magnet's magnetic axis with magnetic 

dipole moment M 0
3

Id r
dB

4 r

  
=  

 
 

 
Figure: Magnetic field due to current element 

d 

• The position vector r here is the vector from 

the centre of the element of length dl to the 

point of observation P. The direction of dl is 

parallel to the direction of current I passing 

through it θ If is the angle formed by r with 

respect to the conductor's length dl, the 

amplitude of magnetic induction is given by 

( )0
3

Id rsin
dB

4 r


=


 

( )0
2

Id sin
dB

4 r


=


 

Here μ0 is the permeability of free space 

and   

70 10
4

−
=


 Tesla-meter/ampere 

• The direction of dB is perpendicular to the 

plane containing current element dl and 

radius vector r which joins dl to P. 

• The total magnetic induction due to the 

conductor is given by. 

B dB=   

• The magnetic intensity H at any point in the 

magnetic field is related to the magnetic 

induction as   

B
H =


 or B H=  

where μ is permeability of the medium. The 

unit of magnetic intensity H is A-m-1 
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Figure: Right hand thumb rule 

Maxwell's Cork Screw Rule:   

When a right-handed cork screw is turned so 

that its tip moves in the direction of current 

flow through the conductor, the direction of 

rotation of the screw's head gives the direction 

of magnetic field lines around the conductor. 

Right Hand Rule: If we hold the conductor in 

the right hand with the thumb stretched in the 

direction of current, the direction in which the 

fingers curl indicates the magnetic field 

direction. 

Application of Biot-Savart Law 

Biot-Savart law is used to find the magnetic 

field due to current carrying conductors. 

Magnetic Induction Due to Infinitely Long 

Straight Current Carrying Conductor 

• Assume I flows through a long straight 

current carrying conductor. We want to find 

the magnetic field at point P, which is 

perpendicular to the conductor. As 

illustrated in Fig. 21.23.  

• Biot-Savart law gives the magnitude of the 

field dB at P due to an infinitesimal element 

of length dl as: 

( )0

2

Id sin 90
dB dB

4 x

 + 
= =


 

where X is the distance between the current 

element and point P. The field dB is directed 

into the plane of the figure and 

perpendicular to it. 

 

Figure: Magnetic field due to infinitely long 

straight wire 

Now from Fig. 21.23. it is clear that, dlcosα 

and   x = r / cosα  so we can write, 

0I cos d
dB

4 r

  
=


  ...(i) 

• Because the conductor is infinitely long, as 

the angle varies from -π/2 to π/ 2, the 

infinitesimal element covers the entire 

length of the conductor, and the field dB is 

directed into the plane of the figure for all 

infinitesimal elements that comprise the 

conductor.  

• Thus, we may combine the magnitudes of 

dB due to all the infinitesimal constituents 

to get the entire field magnitude as, 

2
0 0

2

I I
B cos d

4 r 2 r




−

 
=   =

   

 
Figure: Magnetic field due to finite straight wire 
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A Straight Conductor of Finite Length 

• If a conductor of finite length subtends an 

angle α1 on one side α2 and on the other 

side  of perpendicular from point P as shown 

in Fig. 21.24 then we can write, 

1
1

2

2

0 0I I
B cos d sin
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At the End of a Straight Conductor of Infinite 

Length 

In this case, the angle varies from 0 to π/2, and 

we can write 
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At The End of a Straight Conductor of Finite 

Length 

In this case, (see Fig. 21.25) the angle varies 

from 0 to α, and we can write 
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Figure: Magnetic field at end of straight wire of 

finite length 

At a Point Along the Length of the Straight 

Conductor Near lts End 

In this case (see Fig. 21.26) α1 =  π /2 and , α2 = - 

π /2 and thus equation (ii)gives B = 0 . Actually in 

this case the value of does not vary at all i.e. it is 

constant (at all points of the wire we have α = π 

/2), thus dα = 0and thus equation (i) gives .dB = 0 

 
Figure: Magnetic field along length of straight 

wire 

Magnetic Field on the Axis of a Current 

Carrying Circular Arc 

If a current I flows in a circular arc of radius R 

lying in the Y-Z plane with centre at origin O and 

subtending an angle φ at O, then Biot-Savart 

Law gives the magnetic field dB at a point P on 

the -axis with coordinates (X,0,0) due to a small 

elementary arc of length dl= Rdθ at a distance r 

from P as: 
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where r is a vector from midpoint of dl to P. 

As shown in Fig. 21.28 the coordinates of dl are 

(0, Rcosθ, Rsinθ), where θ is the angle between 

the radius of the arc through dl and the X-axis. 
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Figure: Magnetic field at a point on the axis of current carrying arc 

So we can write 

ˆˆ ˆr xi Rcos j Rsin k= −  −      ...(ii) 

Magnitude  

2 2r x R= +       ...(iii) 

Let us express dl in Cartesian coordinates system as shown in Fig. 21.29. 

ˆˆd Rsin d j Rcos d k= −   +      ...(iv) 

Put (ii), (iii) and (iv) in (i) to get 
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Resultant magnetic field at is 
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Thus B can be resolved into components 

parallel to the x,y and z the  axes. 
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Figure: Vector is in the YZ plane 
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The field at center of the arc: At center x = 0, so 
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yB 0=  

zB 0=  

Thus at the center the field is normal to the 

plane of the arc. 

For a semicircular loop, the angle subtended at 

the center is,  

 = , so 0IB
4r


=  

Magnetic Field on the Axis of a Current Carrying Circular Loop 

The field on the axis of a current carrying circular loop (see Fig. 21.30) can be determined by putting the 

value of angle subtended at the centre as into the expression for a current carrying circular arc derived 

in the previous article. 
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Thus field B is directed along the axis of the circular loop. 

 
Figure: Magnetic field at a point on the axis of circular loop 

For a coil having N circular turns,  
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The field at center of the coil: 

At center x = 0, so  
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The following is the direction of B at the centre 

of a circular current carrying arc or closed 

circular loop: 

If we curl the fingers of the right hand in the 

direction of the current in the arc/loop, the 

stretched thumb points in the direction of the 

field at the centre. 

If the point P is at a very large distance from the 

coil, then X2>>>R2 
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If A is area of one turn of the coil,  
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Different forms of Biot-Savarts law 

Vector form Biot-Savarts law in terms of 

current density 

Biot-savarts law in terms of 

charge and it’s velocity 

Vectorially, 
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In terms of current density 
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In terms of charge and it’s 

velocity, 
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 Direction of dB  is 

perpendicular to both d l  and r̂ . 

This is given by right hand screw 

rule. 

i idl idl
j

A Adl dV
= = =  = current 

density at any point of the 

element, dV = volume of 

element 

q d l
id l d l q qv

dt dt
= = =  

FORCE BETWEEN PARALLEL CURRENTS 

• Consider two long wires kept parallel to one 

other and separated by a tiny distance 

relative to their lengths.  

• Suppose currents I1 and I2 flow through the 

wires in the same direction (see Fig. 21.33). 

Consider a small element dl of the wire 

carrying current I2 The magnetic field at due 

to the wire carrying current I1 is  

( )0 1I ˆB k
2 d
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(B is normal to and directed into the plane 

of the figure) 

 
Figure: Force between parallel currents 

The magnetic force on this element is  
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(directed towards the wire carrying current I1) 

• Thus the wire carrying current I2 is attracted 

towards the wire carrying current I1. By 

Newton's third law the force acting on wire 

carrying current I1 will also be attractive. 

Thus the two wires are attracted towards 

each other. 

• The force per unit length on each of the 

wires due to the other wire will be, 

0 1 2I IdF

d 2 d


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Parallel currents attract each other, and 

antiparallel currents repel each other. 

Note: Memorizing various formula of magnetic 

field due to ring and wire carrying current 

would easily help in calculating magnetic field 

due to complicated wire systems. Also, be 

careful about the direction of field in every 

problem you solve. 

AMPERE'S LAW 
• This law is also known as the 'Theorem on 

Circulation of Vector B'. 

• This law states that the line integral or 

circulation of magnetic field vector B around 

a closed channel is equal to μ0 times the 

algebraic sum of the currents enclosed by 

the closed path. 

 
Figure: Current enclosed by amperian loop 

0 encB d I =   

• The closed path is also called Amperian 

loop. 

• Ienc is the algebraic sum of all currents 

travelling through the closed path's region. 

Current is assumed to be positive if it flows 

in the direction associated with the evasion 

of the closed path by the right-hand screw 

rule. Curling the fingers of the right hand 

around the closed passage in the direction 

of circumvention yields the positive 

direction of current. Negative current flows 

in the opposite direction. 
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